Toward an Effective Risk-Conscious and Collaborative Vehicular Collision Avoidance System

Tarik Taleb, Member, IEEE, Abderrahim Benslimane, Senior Member, IEEE, and Khaled Ben Letaief, Fellow, IEEE

Abstract—In this paper, we introduce a cooperative collision-avoidance (CCA) scheme for intelligent transport systems. Unlike contemporary strategies, the envisioned scheme avoids flooding the considered vehicular network with high volumes of emergency messages upon accidental events. We present a cluster-based organization of the target vehicles. The cluster is based upon several criteria, which define the movement of the vehicles, namely, the directional bearing and relative velocity of each vehicle, as well as the intervehicular distance. We also design a risk-aware medium-access control (MAC) protocol to increase the responsiveness of the proposed CCA scheme. According to the order of each vehicle in its corresponding cluster, an emergency level is associated with the vehicle that signifies the risk of encountering a potential emergency scenario. To swiftly circulate the emergency notifications to collocated vehicles to mitigate the risk of chain collisions, the medium-access delay of each vehicle is set as a function of its emergency level. Due to its twofold contributions, i.e., the cluster-based and risk-conscious approaches, our adopted strategy is referred to as the cluster-based risk-aware CCA (C-RACCA) scheme. The performance of the C-RACCA system is verified through mathematical analyses and computer simulations, whose results clearly verify its effectiveness in mitigating collision risks of the vehicles arising from accidental hazards.

Index Terms—Cooperative collision avoidance (CCA), intervehicular communication (IVC), vehicular ad-hoc network (VANET).

I. INTRODUCTION

LONG with the ongoing advances in dedicated short-range communication (DSRC) and wireless technologies, intervehicular communication (IVC) and road–vehicle communication (RVC) have become possible, giving birth to a new network-type called vehicular ad-hoc network (VANET). The key role that VANETs can play in the realization of intelligent transport systems has attracted the attention of major car manufacturers (e.g., Toyota, BMW, and Daimler-Chrysler). A number of important projects have been subsequently launched. Crash Avoidance Metrics Partnership (CAMP), Chauffeur in Europe Union, CarTALK2000, FleetNet, and DEMO 2000 by the Japan Automobile Research Institute (JSK) are a few notable examples.

VANETs can be used for a plethora of applications, ranging from comfort and infotainment applications to onboard active safety applications. The latter are the most attractive and promising ones. Such applications assist drivers in avoiding collisions. They coordinate among vehicles at critical points such as intersections and highway entries. Via an intelligent dissemination of road information (e.g., real-time traffic congestion, high-speed tolling, or surface condition) to vehicles in the vicinity of the subjected sites, collisions among vehicles can be prevented, and on-road vehicular safety can be accordingly enhanced.

To facilitate safety applications in VANETs, intraplatoon cooperative collision-avoidance (CCA) techniques have significantly evolved recently. With CCA systems, the number of car accidents and the associated damage can be significantly reduced. The prime reason for deploying CCA systems is that VANETs is the substantially long reaction time (i.e., 0.75–1.5 s [2]) of any human driver to apply the brake following an emergency scenario. The potential damage inflicted by such a long reaction time of an individual driver is, indeed, remarkably high in case of a close formation of vehicles, which travel at high speeds. Instead of having drivers to react to the brake lights of vehicles immediately ahead, CCA systems enable vehicles to promptly react in emergency situations via a fast dissemination of warning messages to the vehicles in the platoon. However, the effectiveness of a given CCA system depends not only on the reliability of the circulated warning messages but on the specific nature of the emergency situation at hand as well. To this end, the underlying medium-access control (MAC) protocols of the concerned VANET need to make sure that the medium-access delay associated with each vehicle, under an emergency event, remains as short as possible. Driven by this need, we envision an effective CCA scheme, which takes into account a risk-aware MAC protocol, which we have specifically tailored for VANET environments. Furthermore, we envision clusters of vehicles based on their movement traits, including directional headings and relative velocities, and on the intervehicular distances as well. In a given cluster, each vehicle is assigned an emergency level, which reflects the risk associated with that particular vehicle to fall into an accidental hazard, e.g., collision with the other cars in the platoon. This cluster-based approach also permits us to set the medium-access delay of an individual vehicle as a function of its emergency level. By so doing, the envisioned strategy attempts to provide the drivers of the vehicles with warning messages pertaining to the emergency scenario with an abridged version of this work has appeared in [1].
the shortest delivery latencies possible. This feature should prevent chain collisions or reduce the associated damage. Our adopted strategy is referred to as the cluster-based risk-aware CCA (C-RACCA) scheme due to its twofold contributions, namely, the formation of clusters and the adoption of the risk-conscious medium-access protocol.

The remainder of this paper is organized as follows. Relevant research on MAC protocols in VANET environments is presented in Section II. The operations of the envisioned C-RACCA system comprising its clustering mechanism and the risk-aware MAC protocol are delineated in detail in Section III. The performance of the C-RACCA system is evaluated in Section IV, which justifies the simulation setup and provides an in-depth analysis of the simulation results. Concluding remarks follow in Section V.

II. RELATED WORK

VANETs are well characterized for their rapidly and dynamically changing topologies due to the fast motion of vehicles. Unlike traditional mobile ad hoc networks (MANETS), the nodes’ mobility in VANETs is constrained by predefined roads and restricted speed limits. Additionally, nodes in VANETs can be equipped with devices with potentially longer transmission ranges, rechargeable source of energy, and extensive on-board storage capacities. Processing power and storage efficiency are, thus, not the issue in VANETs that they are in MANETs.

The work by Little and Agarwal [3] serves as an inspiring one for utilizing clusters of vehicles in VANETs without the use of fixed infrastructures (e.g., access points, satellites, and so forth). The hypothesis of this work states that the vehicles, which travel along the same directed pathway, can form interconnected blocks of vehicles. Thus, the notion of cluster of vehicles is adopted whereby a header and a trailer identify a particular cluster that is on the move. Little and Agarwal used multihop routing in these blocks or clusters of vehicles to obtain an optimum propagation rate to disseminate information pertaining to traffic and road conditions. For this purpose, they characterized the bounds of information propagation under different traffic patterns. In addition, by combining delay-tolerant networking and MANET techniques, they also implemented the safety information dissemination algorithm as a routing protocol.

To inform all the vehicles in a risk area (along a highway) regarding an emergency scenario (e.g., an accident or an impediment on the road) via alarm broadcasts, a novel communications technique called the intervehicles geocast (IVG) protocol was proposed [4]. IVG considers a vehicle to be in the risk area if the accident/obstacle is in front of that vehicle. Based on the temporal and dynamic attributes of the locations, speeds (i.e., highway), and driving directions of the vehicles in the risk zone, IVG defines multicast groups of these vehicles. Since IVG does not maintain neighboring cars’ list at each vehicle, the overall signaling overhead is reduced, which saves precious bandwidth to disseminate the actual warning messages according to a defer time algorithm. In addition, relays are deployed dynamically in a distributed manner (in each driving direction) that rebroadcasts the warning messages to ensure their delivery to the vehicles in the risk area.

The broadcast storm problem, in which there is a high level of contention and collisions at the MAC level due to an excessive number of broadcast packets, is presented in the VANET context in [5]. The serious nature of the broadcast storm problem is illustrated in a case study of four-lane highway scenario. This work proposes three lightweight broadcast techniques to mitigate the broadcast storms by reducing redundant broadcasts and packet loss ratio on a well-connected vehicular network. This work, however, does not consider addressing the broadcast storm issue at the MAC layer (i.e., the real source of the problem), which may be able to mitigate the problem more effectively.

To prevent accidents that may occur due to late detection of distant/roadway obstacles, Gallagher et al. [6] emphasized the need for longer range vehicular safety systems that are capable of real-time emergency detection. To this end, they investigated the applicability of DSRC resources to improve the efficiency and reliability of vehicle safety communications. This work specifically partitions crucial safety messages and the nonsafety ones. The former is termed as “safety-of-life” messages, which are assigned the highest priority and transmitted on a dedicated safety channel. The underlying MAC and physical (PHY) layers, guided by the higher layers, enable the awareness and separation of safety and nonsafety messages.

In the survey conducted by Hartenstein and Laberteaux [7], the parameters that may influence the probability of packet reception in VANETs have been pointed out, including vehicular traffic density, radio channel conditions, transmission power, transmission rate, contention window sizes, and the channel prioritization of packets. This work also mentions that for 174 packets prioritization in particular, the enhanced distributed channel access (EDCA), which is also part of 802.11-2007 specifications, can be used. Four distinct access categories, each with its own channel access queue, are provided in this scheme, whereby the interframe space and the contention window size can be tailored to the specific needs of the target VANET. Indeed, Torrent-Moreno [8] demonstrates that, in contrast with the simple carrier sense multiple access (CSMA) scheme, the channel access time and probability of packets reception improve to an extent under EDCA scheme, even in the case of a saturated channel.

Sichitiu and Kihl [9] survey IVC systems and focus on public safety applications toward avoiding accidents and loss of lives of the passengers. Their study points out that safety applications are inherently delay sensitive, e.g., vehicular warning systems to avoid side crashes of cars and trains at crossroads, deploying safety equipment such as inflating air bags and tightening seat belts, and so forth. The system penetration of such applications is, however, subject to determining the zone of relevance as accurately as possible. For instance, when an accident in the right lane of a highway occurs, it is considered in the covered studies to only affect vehicles approaching the accident from behind. The survey also describes the available communication technologies, focusing on their PHY and MAC layers, that may facilitate vehicular communications to disseminate emergency messages. The studied protocols that are considered to be suited for intervehicle emergency communications include IEEE 802.11 and its DSRC standard, Bluetooth 202...
forwarding protocols can reduce the number of signaling messages to actively propagate a given message, MDDV improves message-delivery reliability. While the aforementioned packet-forwarding protocols can reduce the number of signaling messages in a VANET, ensuring prompt delivery of critical warning messages is also crucial for CCA systems. For this purpose, there is a need to develop adequate MAC protocols.

Many of the MAC protocols that have evolved over the years are, however, not applicable to VANET environments. Among the contemporary MAC protocols, the IEEE 802.11 MAC specification is considered to be the leading choice among VANET designers as a means to provide safety applications [25]. The MAC protocol of IEEE 802.11 consists of a number of sophisticated mechanisms that rely on soft handshaking involving a number of signaling messages (e.g., request-to-send and clear-to-send messages) exchanged between the sender and the receiver. These mechanisms include the following: 1) CSMA with collision avoidance (CSMA/CA); 2) multiple access with collision avoidance (MACA); and 3) MACA for wireless with distributed coordinated function mode. More tailored MAC protocols for VANET environments are also evolving, as shown in the study conducted by Adachi et al. [16]. In addition, the following two techniques have evolved into safety-critical application domains such as CCA: 1) data prioritization [17], 201 and 2) vehicle prioritization. We focus on the latter in this paper whereby the emergency level associated with each vehicle in the considered VANET is taken into account to prioritize the vehicle. Intuitively, vehicles with high emergency levels should be always granted prompt access to the medium.

Providing security for protecting the vehicular positions in a VANET is also emerging as an active area of research. For example, Yan et al. [28] presented a novel approach that employs an on-board radar at each vehicle to detect neighboring vehicles and to confirm their announced coordinates. This notion of local security (i.e., specific to individual vehicles) is extended to achieve global security by using the following two techniques: 1) a preset position-based groups to form a communication network and 2) a dynamic challenging scheme to confirm the coordinate information sent by remote vehicles. Although the scope of our work in this paper does not cover these security aspects, we feel the importance to incorporate such safeguards to securely disseminate safety information/warning messages in VANETs in the future.

III. Cluster-Based Risk-Aware Cooperative Collision-Avoidance System

In this section, we initially provide a brief overview of the functionality of the traditional CCA system proposed by Biswas et al. [17] and point out its shortcomings. We then propose our C-RACCA system, which consists of adequate solutions to address these issues, namely, a dynamic clustering procedure to formulate clusters of vehicles, followed by a uniquely designed risk-aware MAC protocol.

A. Shortcomings of the Traditional CCA Systems

In traditional CCA systems [17], upon an emergency situation, a vehicle in the considered platoon dispatches warning messages to all other vehicles behind it. A recipient takes into account the direction of the warning message arrival with respect to its directional bearing and decides whether to pass
Regarding the considered VANET environment, as listed in the
mechanism, it is essential to point out a number of assumptions
B. Dynamic Clustering of Vehicles
these shortcomings of the existing CCA systems, we offer a
this message-delivery latency increases further. To overcome
message retransmissions owing to excessive MAC collisions,
front to the vehicles located at the rear of the platoon formation.
To make matters even worse, in the case of multiple failed
message transmissions owing to excessive MAC collisions,
this message-delivery latency increases further. To overcome
these shortcomings of the existing CCA systems, we offer a
novel approach that dynamically forms clusters of the vehicles
in a platoon.

B. Dynamic Clustering of Vehicles
Prior to a detailed description of the envisioned clustering
mechanism, it is essential to point out a number of assumptions
regarding the considered VANET environment, as listed in the
following.
1) To accurately estimate the current geographical location,
each vehicle in the platoon consists of global positioning
systems (GPSs) or similar tracking modules. It should
be noted that the knowledge pertaining to the real-
time coordinates of the vehicular nodes is an assump-
tion made by most protocols and applications. Indeed,
this is a reasonable enough assumption pointed out by
Boukerche et al. [18] because the GPS receivers can
easily be deployed on vehicles. However, as VANETs
are evolving into more critical areas and becoming more
reliant on localization systems, there may be certain
undesired problems in the availability of GPS in certain
scenarios (e.g., when the vehicles enter zones where GPS
signals may not be detected, such as inside tunnels, under-
ground parking, and so forth). Indeed, there exist several
localization techniques, such as dead reckoning [19], cel-
lular localization [21], and image/video localization [22],
that may be used in VANETs so that this GPS limitation
may be overcome. In addition, GEOCAST [20], which is
one of our earlier developed protocols, may be used so
that it is still possible to support some vehicles, which
have lost GPS signals, or do not have GPS on board, to
learn from the other vehicles and position themselves.
2) To facilitate communications, two distinct wireless chan-
els are considered to exchange signaling messages to
formulate vehicles’ clusters and to issue/forward warning
messages, respectively.
3) Each vehicle is assumed to be capable of estimating its
relative velocity with respect to neighboring vehicles. In
addition, it is also considered to be able to compute, via
adequately deployed sensors, intervehicular distances.
4) When a vehicle receives a warning message, it can esti-
mate the direction of the message arrival, i.e., whether the
received warning originated from a vehicle from the front or
the rear.
5) Each vehicle is considered to have knowledge on its 375
maximum wireless transmission range, which is denoted 376
by T_r. A vehicle constantly uses this parameter to update
its current transmission range R in the following manner: 378
$$R = T_r \cdot (1 - \epsilon), \quad 0 < \epsilon \leq 1$$
where ϵ refers to the wireless channel fading conditions 379
at the current position. Equation (1) is used for simple 380
estimation of the practically possible transmission range 381
from the given surrounding conditions that affect the 382
maximum transmission range of the vehicle. To compute 383
this, a simple parameter ϵ is used, which reflects the 384
surrounding conditions. If the vehicle is currently moving 385
in the downtown, then its transmission range will be 386
lower than the maximum possible one. Because, there 387
will be many obstacles (e.g., high-rise buildings, indus-
tries, and other installations), which will interfere with 388
the vehicle’s wireless signal. To reflect this situation, ϵ in 389
(1) is set to a high value in a downtown scenario. On the 390
other hand, when a car is moving in the suburbs, there 391
are fewer obstacles affecting the vehicle’s transmitted 392
signals. Therefore, in such a scenario, low values of ϵ are 393
used to illustrate that the vehicle may use a transmission 394
range that is closer to the maximum possible one. GPS or 395
other positioning systems (e.g., Galileo) are used to ob-
tain the terrain information so that the appropriate values 396
of ϵ in a given location can be appropriately estimated.

Additionally, we consider, for clustering purposes, a platoon 400
of vehicles, which travel along the same road toward the same 401
direction. Consistent with previous work in this domain [15], 402
the envisioned grouping of vehicles is, thus, based upon their 403
movement directions. Directional-antenna-based MAC proto-
404 cols [27] may be utilized to group the vehicles more accurately, 405
whereby the transmission range of vehicles is split into M 406
transmission angles of equal degrees ($360^\circ / M$). By assigning 407
each transmission angle to a unique vehicle group, M groups 408
can thus be formulated.

Similar in spirit with the assumptions in [15] and [27], our 410
approach considers, in forming a cluster, only the vehicles that 411
belong to the same group in terms of moving on the same road 412
toward the same direction. Fig. 1 portrays an example of three 413
such clusters. As depicted in this figure, a vehicle may act as a 414
special node, i.e., as a cluster head (CH) or a subcluster head 415
(SCH), or may merely drive as an ordinary vehicle (OV). In 416
case of forming a CH, the vehicles are voluntarily required to 417
consistently advertise for the cluster while maintaining and up-
dating their respective cluster tables. On the other hand, the first 418
SCH node is selected as the last vehicle that is reachable by the 419
CH. Indeed, the SCH node may be used to define a subsequent 420
SCH entity (i.e., the last vehicle reachable from this SCH node), 421
and so forth. SCH nodes are in charge of relaying packets (e.g., 422
emergency warning messages) from either a CH or from SCHs 423
in front to other vehicles within the same cluster that lie outside 424
two vehicles, and therefore, they are safe, provided that their transmission range of the former (provided that it exists) reaches C_i. On the other hand, the latter is reachable by C_i. The distance between a pair of vehicles C_j and C_k is denoted by $d_{j,k}$. V_j and $V_{j,k}$ refer to vehicle C_j's actual velocity and the relative velocity with respect to vehicle C_k, respectively. Therefore, the magnitude of $V_{j,k}$ is assumed to be the same as that of $V_{k,j}$. Additional notations, which are used in the clustering operation, are listed as follows:

1. τ_i^a: time required for a vehicle C_i to reach vehicle C_{i-1} immediately ahead of it (i.e., $\tau_i^a = d_{i-1,i}/V_{i-1,i}$);
2. ϕ_i: set of CHs or SCHs in front of vehicle C_i; this set also belongs to C_i’s group;
3. ϕ_{ij}^{CH}: the closest CH or SCH ($\in \phi_j$) in front of vehicle C_j;
4. ψ_{ij}: set of CHs or SCHs behind vehicle C_j; this set also belongs to C_j’s group;
5. a_e and a_c: emergency deceleration and regular deceleration, respectively, which indicate the occurrence of an emergency event to trigger the transmission of critical warning messages;
6. δ: the average reaction time of individual drivers ($0.75 \leq \delta \leq 1.5$ s).

For each vehicle C_i and its immediately following vehicle C_{i+1}, we consider that no collision will occur between these two vehicles, and therefore, they are safe, provided that their distance $d_{i,i+1}$ satisfies the following condition for $\Gamma_{i,i+1}$ (i.e., d_{max} denotes the negation of the condition):

$$\Gamma_{i,i+1} \Leftrightarrow d_{i,i+1} > \min \left(d_{\text{max}}, \alpha \cdot \left(V_{i+1} \cdot \delta + \frac{V_{i+1}^2 - V_i^2}{2a_e} \right) \right)$$

where α represents a tolerance factor. In addition, d_{max} denotes a safety distance in which if two vehicles are distant, no collision will occur between the two vehicles, regardless of the vehicles’ velocities (e.g., in case of a maximum velocity $V_{\text{max}} = 180$ km/h, $d_{\text{max}} = V_{\text{max}} \cdot 1.5$ s $= 75$ m). It should be noted that the direction of the vehicles is not included in (2) since we consider the vehicles to be traveling along the same direction in the same lane.

Using the above notations, for any vehicle C_i, we have the following lemma:

$$\exists C_{i-1} \Leftrightarrow \phi_i \neq \emptyset$$

$$\exists C_{i+1} \Leftrightarrow \psi_i \neq \emptyset.$$

The proof of the lemma is trivial.

Three specific scenarios pertaining to a vehicle may exist in the envisioned clustering operation. A vehicle may be in one of the following three states.

1. It starts its engine and gets on a road.
2. It decides to travel in a different direction. Consequently, it leaves its old group G_o and joins a new group of vehicles, which is denoted by G_n.
3. It continues to travel on the same road without changing its direction. However, it increases or decreases its travel speed.

In the remainder of this subsection, we describe the clustering mechanism in detail by focusing on each of the above scenarios.

1. Joining a Group for the First Time: A vehicle C_i, after it gets on a road, initially broadcasts a CH solicitation message to the neighboring vehicles, which are assumed to belong to group G_n. The CH solicitation message queries the other 495 vehicles regarding the CH of G_n. Meanwhile, C_i also initiates a timer θ. The following two cases exist: 1) C_i receives no affirmative response to its initial query prior to expiration of θ. In the former case, C_i decides to assume the role of CH in G_n and starts constructing its own cluster. In the latter case, C_i needs to take into consideration the responses from other CH(s). At first, C_i verifies if any CH ahead of it has 503 also transmitted a CH advertisement message. Otherwise, if $\phi_i = \emptyset$, C_i checks whether it 505 maintains long enough distance ($d_{i,i+1}$) with C_{i+1}, which immediately follows it from behind. This verification is required to ascertain the safety condition ($\Gamma_{i,i+1}$) described earlier. If ($\Gamma_{i,i+1}$) holds, C_i constructs its own cluster and declares itself as the CH of this newly formed cluster. Otherwise, C_i takes over, from ψ_i^{CH}, the CH behind it by 511 designating itself as the new CH (i.e., $C_i = \phi_i^{CH}$).

On the other hand, if C_i obtains a CH advertisement message from at least one CH ahead of it (i.e., $\phi_i \neq \emptyset$), it verifies whether 514...
TABLE I
ALL POSSIBLE CASES FOR A VEHICLE C_i JOINING FOR THE FIRST TIME A GIVEN GROUP

<table>
<thead>
<tr>
<th>$\psi_i = \emptyset$</th>
<th>$\phi_i = \emptyset$</th>
<th>$\Gamma_{i,i-1}$</th>
<th>$\psi_i \neq \emptyset$</th>
<th>$\phi_i \neq \emptyset$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_{i,i+1}$</td>
<td>Form own cluster</td>
<td>$\Gamma_{i,i+1}$</td>
<td>Take authority of ψ_i^CH</td>
<td>Form own cluster</td>
</tr>
<tr>
<td>C_i</td>
<td>C_i</td>
<td>$\Gamma_{i,i-1}$</td>
<td>$\Gamma_{i,i+1}$</td>
<td>ψ_i^CH</td>
</tr>
<tr>
<td>Join ϕ_i^CH</td>
<td></td>
<td></td>
<td></td>
<td>Join ϕ_i^CH</td>
</tr>
</tbody>
</table>

Fig. 2. Steps required for a vehicle to join a group for the first time.

The distance to the vehicle immediately ahead of it (C_{i-1}) and belonging to the cluster CH is sufficiently large to avoid collision with C_{i-1}. C_i constructs its own cluster by designating itself as the CH, provided that 1) the condition $\Gamma_{i,i-1}$ holds and 2) that no vehicle follows it from behind ($\psi_i = \emptyset$). If ($\psi_i \neq \emptyset$), the vehicle will check its distance to the vehicle right behind it and behave in a way similar to the case when ($\phi_i = \emptyset, \psi_i \neq \emptyset$).

On the other hand, if the condition $\Gamma_{i,i-1}$ persists, C_i is required to join the cluster formed by ϕ_i^CH. Table I summarizes all the aforementioned cases. The whole process of joining a group for the first time is illustrated in Fig. 2.

A vehicle C_i, which desires to join a given cluster, issues a self notification (SN) message that contains the vehicle’s ID, current location, and transmission range to the concerned CH. Upon receiving the SN, the CH treats it as a solicitation request from C_i to join the cluster. The CH then adds C_i into its cluster table and informs the rest of the cluster members via an updated cluster advertisement (CA) message, which contains the IDs of all the involved entities including the cluster, the CH, the SCH(s), and the OVs. In the case that a new vehicle emerges as a new CH in the considered cluster, the previous CH needs to transfer the most recently updated cluster table to the new CH, which, in turn, broadcasts an updated CA packet to the cluster members to inform them regarding the changes.

2) Departure From a Group and Joining a New One: As mentioned earlier, the second scenario consists of a moving vehicle C_i that changes its direction, which results in its departure from its old group G_o to a new group G_n. C_i, at first, informs G_n about the departure event. Upon joining G_n, C_i either forms its own cluster or joins a preexisting one following the previously described steps in Section III-A1.

The departure of C_i from G_o may yield three distinct cases, namely, whether C_i was the CH, a SCH, or merely an OV in G_o. These three cases are depicted in Fig. 3 and are delineated as follows.

1) If C_i is an OV in G_o: In this case, departure operation of C_i from G_o is trivial since it only requires notifying either C_i the CH (denoted by CH_{G_o}) directly or the corresponding

AQ1
SCH (i.e., SCH_{G_o}) similarly. In latter case, SCH_{G_o} first removes C_i from its subcluster table and instructs CH_{G_o} about the event that prompts CH_{G_o} in its own turn, to delete C_i’s entry from its cluster table. Finally, CH_{G_o} issues an updated CA message to inform the rest of the members that C_i is no longer with G_o.

2) If C_i is a SCH in G_o: C_i, in this scenario, will assign C_i-1 in G_o to assume the responsibility of the new SCH. In addition, C_i also transfers the subcluster table to C_i-1 before departing G_o.

3) If C_i is a CH in G_o: This scenario requires C_i to assign the role of the new CH to another cluster member, which it deems most appropriate. In addition, C_i also transfers the cluster table to the new CH prior to its departure from G_o. The new CH notifies the rest of the cluster members regarding the change via an updated CA message.

Fig. 4 depicts a scenario whereby a vehicle A, with a transmission range T_A and speeding at a velocity V_A, turns onto a new street inclined by an angle α, while vehicle C, which is immediately ahead of it, and vehicle B, which is immediately behind it, continue moving straight along the same road at velocities V_C and V_B, respectively. Fig. 5 demonstrates the results obtained from numerical analysis that there is largely sufficient time for vehicle A to communicate with both vehicles C and B in the case of the following two different scenarios: 1) a highway scenario where vehicles B and C speed at 120 km/h, and vehicle A reduces its speed to 60 km/h upon turning onto the new road and 2) an urban scenario where vehicles B and C move at 60 km/h, and vehicle A turns at a speed equal to 30 km/h. The transmission range of vehicle A is set to 300 and 150 m in the highway and urban scenarios, respectively. Fig. 6 (derived from analytical computations) shows the time required to join a cluster in an urban and a highway scenario for different transmission ranges of vehicles. The figure clearly indicates that the time required for a vehicle to join a cluster is short in both scenarios and can be easily accommodated by the connectivity time shown in Fig. 5.
the other cluster becomes so short that the condition of the two clusters (denoted by C_i) of the previous cluster (consisting in vehicles part of the former clusters containing the vehicles following C_i) is no longer satisfied. The reverse may also be possible, whereby two clusters may merge into a single new cluster. When this condition persists, the intervehicular space between the two clusters is so large that the condition of the two clusters (denoted by C_i) of the previous cluster (consisting in vehicles part of the former clusters containing the vehicles following C_i) is no longer satisfied. The reverse may also be possible, whereby two clusters may merge into a single new cluster.

A particular cluster may be divided into two different clusters, provided that each of the two adjacent vehicles, which are denoted by C_i and C_{i+1} (both the vehicles are members of the same cluster) continues to travel at a relative speed $V_{i,i+1}$ until the intervehicular space $d_{i,i+1}$ satisfies the condition $\Gamma_{i,i+1}$. When this condition persists, C_{i+1} becomes the CH in one of the former clusters containing the vehicles following C_i from behind. On the other hand, C_i joins another part of the previous cluster (consisting in vehicles C_i and beyond) as an OV.

Two existing clusters may be allowed to merge and evolve as a single one, provided that the distance between the CH of one of the two clusters (denoted by C_i) and the last vehicle C_{k} in the other cluster becomes so short that the condition $\Gamma_{k,i}$ arises and holds. In this new cluster, C_i will handle the cluster table of the former cluster (i.e., to which C_k previously belonged). C_i then broadcasts an updated CA message to all the members to inform them regarding this change.

Conducting the aforementioned dynamic clustering operations, each group of vehicles moving along the same road and in the same direction will be organized into a number of clusters of different sizes and with independent cluster heads (see Fig. 1). The distance between two adjacent clusters is always long enough to avoid collisions between vehicles from both clusters. On the other hand, the intervehicle distance between two adjacent vehicles in a given cluster is always shorter than the “safety distance.” Therefore, if a vehicle in a cluster detects an emergency event and applies brakes, collisions among vehicles are likely to happen if drivers do not react promptly. As stated earlier, the exchange of signaling messages for the formation of clusters is performed on a channel different than the one used to transmit warning or emergency messages. MAC collisions due to the transmission of such signals, thus, should not impact the responsiveness of our proposed C-RACCA system.

C. Risk-Aware MAC Protocol

In this section, we describe the envisioned risk-aware MAC protocol. To lay the basis of this work, we consider studying the original MAC protocol in the IEEE 802.11 specifications, owing to its enormous popularity among VANET designers and researchers. For simplicity, the case of a single cluster is considered, whereby the vehicles are indexed based upon their order within the cluster with respect to their movement directions. In other words, without any loss of generality, C_1 refers to the car immediately behind it, and so forth. In addition, we consider highway platoons for studying the envisaged risk-aware MAC protocol due to the fact that the likelihood of chain vehicle collisions is substantially high in a highway scenario.

The 802.11 standard currently defines a single MAC that interacts with the following three PHY layers: 1) frequency-hopping spread spectrum with a slot time $\xi = 50 \mu s$; 2) direct sequence spread spectrum with a slot time equal to $\xi = 20 \mu s$; 3) infrared with a slot time equal to $\xi = 8 \mu s$. The general concept behind the MAC protocol in IEEE 802.11 is that when a mobile node desires to transmit, it first listens to the desired channel. If the channel is idle (no active transmitters), the node is allowed to transmit. If the medium is busy, the node will defer its transmission to a later time and then to a further contention period. To resolve contention issues among different stations that are willing to access the same medium, an exponential back-off mechanism is executed in the IEEE 802.11 MAC protocol prior to the calculation of the contention period. This, however, significantly increases the data delivery latency. Consequently, in the case of delay-sensitive safety-critical CCA applications, the effectiveness of the original 802.11 MAC protocol decreases substantially. Indeed, high latency in the dissemination of a warning message will lead to scenarios where some vehicles will not have enough time to react, and vehicle collisions become inevitable. To cope with this shortcoming, we envision that the IEEE 802.11 back-off procedure should be substituted by a more suitable mechanism, which takes into account, in the contention window of a given critical event, the risk-awareness of the vehicles involved.
that upon an emergency situation, vehicles \(C_i \) and \(C_{i+1} \) slow down their velocities at rates denoted by \(a_e \) and \(a_r \), respectively. The next task is to calculate the maximum delay \(\delta_i \) since the detection of the emergency event, before which, \(C_i \) may be able to notify \(C_{i+1} \) (i.e., the vehicle following \(C_i \) from behind) of the event to avoid collision.

Vehicle \(C_i \) will be moving for a time period \(\Delta_i = \left(V_i / a_e \right) \) before it eventually stops. The distances traveled by vehicles \(C_i \) and \(C_{i+1} \) over \(\Delta_i \), are denoted by \(l_i \) and \(l_{i+1} \), respectively. Equation (7) is used to compute \(l_i \), and (8), shown below, is 710 employed to derive \(l_{i+1} \) as follows:

\[
\delta_i = \frac{V_i^2}{2 \cdot a_e}
\]

\[
l_{i+1} = V_{i+1} \cdot \frac{V_i}{a_e} - \frac{a_e}{2} \left(\frac{V_i}{a_e} - \delta_i \right)^2. \tag{8}
\]

To avoid collision between \(C_i \) and \(C_{i+1} \), the following inequality should be satisfied by taking into consideration \(l_i \) and \(l_{i+1} \), i.e.,

\[
l_{i+1} > l_i + d_{i+1,i} + L_v \tag{9}
\]

where \(L_v \) is the average vehicle length. This condition can be satisfied if and only if \(C_{i+1} \) is notified at maximum \(\delta_i^{\text{max}} \) time after the event-detection time (i.e., the time when \(C_i \) starts decelerating), i.e.,

\[
\delta_i^{\text{max}} = \max \left(\frac{V_i}{a_e} - \frac{2}{a_e} \left(\frac{V_i}{a_e} - \frac{V_i - V_{i+1}}{2} - d_{i+1,i} - L_v \right), 0 \right). \tag{10}
\]

The collision between \(C_i \) and \(C_{i+1} \), however, becomes unavoidable when \(\delta_i^{\text{max}} = 0 \), which compels \(C_i \) to continue broadcasting warning messages to all vehicles within its transmission range. This provision is required to mitigate further damage inflicted on the platoon by preventing vehicles that are far behind from colliding with one another. Consequently, \(CW_i \) (i.e., the contention window for vehicle \(C_i \)) is set as follows:

\[
CW_i = \begin{cases}
\sum_{j=0}^{k} (1 - \Omega_i)^j \cdot cw \cdot \xi, & \text{if } \delta_i^{\text{max}} = 0 \\
\min \left(\sum_{j=0}^{k} (1 - \Omega_i)^j \cdot cw \cdot \xi, \delta_i^{\text{max}} \right), & \text{otherwise.}
\end{cases} \tag{11}
\]

Unless otherwise specified, we set \(a_e, a_r, \) and \(L_v \) to \(8 \text{ m/s}^2 \), \(4.9 \text{ m/s}^2 \), and \(4 \text{ m} \), respectively. It should be noted that the values of \(a_e \) and \(a_r \) can be used by the system as an indication for an emergency event (e.g., \(a_e \) for cluster head, \(a_r \) or above for \(279 \) other cluster members) to trigger the transmission of warning messages.

On detecting an emergency event, a vehicle issues a warning message to every member of its cluster (including SChs) that its transmission range currently covers. An SCH entity forwards this message to each of its subcluster members. It should be noted that a vehicle can safely discard messages originating from vehicles following it from the back. Otherwise (i.e., if the warning message arrives from the front), the recipient vehicle, 738 at once, reacts to it based on the event type included in the 739...
warning message. If the recipient vehicle encounters redundant
warning messages, it takes action based on the first one only
and discards the rest of the duplicate copies.

IV. PERFORMANCE EVALUATION

A. Collision Model

Before delving into details of the considered collision model
in our simulation, we list a number of important parameters. Let
S and Lc denote the size of the considered cluster (where the
collisions are simulated) and the average vehicle length, respecti-
vably. As mentioned earlier, we are more keen on focusing on
highway platoon scenarios, whereby the likelihood of collisions
among the cluster members is much higher in contrast with ur-
ban scenarios. In our simulated highway platoon environment,
we consider the most frequent scenario, whereby the CH (i.e.,
the vehicle in front of the platoon) identifies an emergency
event. When the CH detects an emergency situation at time t0,
it slows down at an emergency deceleration ace. The rest of the
vehicles are considered to slow down at a regular deceleration
a., For the sake of simplicity and without any loss of generality,
we further assume that when a vehicle Ci collides with a vehicle
Cj−1 ahead of it, Ci immediately stops. On the other hand,
Cj−1 keeps on traveling without deceleration. Although this
particular assumption does not conform to realistic scenarios,
it does not change any of the rudimentary observations made so
far on the envisioned C-RACCA framework.

Let Δti represent the latency since the detection of the
emergency event until vehicle Ci stops or collides with its
preceding vehicle Cj−1. The velocities of Ci at the time of
Δt time are denoted by Vi and Vj, respectively. The delay incurred in delivering the warning
message to Cj is referred to as δj. It is worth noting that all
vehicles in the cluster (or subcluster) ought to experience similar δi, provided that the broadcast of warning messages by the
CH/SCNs and their deliveries at the recipients are successful.

As previously evaluated in (7), li defines the distance traveled
by Ci since the event detection time until the vehicle completely
stops or collides with Cj−1. The following equations pertain to
the CH, i.e., C1:

\[\Delta t_1 = \frac{V_i^o}{a_e} \]
\[l_1 = V_i^o \Delta t_1 - \frac{1}{2} a_e \cdot \Delta t_1^2 \]
\[V_1^* = 0. \]

For other vehicles, except for the considered CH (i.e., Ci,
1 ≤ i ≤ S), the conditions for two adjacent vehicles Ci and
Cj−1 not to collide can be obtained in terms of the following

\[\Delta t_i = \frac{V_i^o}{a_e} + \delta_i \]
\[l_i = V_i^o \Delta t_i - \frac{1}{2} a_e \cdot (\Delta t_i - \delta_i)^2 \]
\[V_i^* = 0. \]

On the other hand, in the case that Ci and Cj−1 collide, the
following two distinct cases may be envisaged.

Case 1) Ci collides while Cj−1 is still moving.

Case 2) Cj−1 stops, and then, Ci hits Cj−1.

The following inequality should hold in case 2):

\[l_{i-1} + d_{i-1} + L_v \leq l_i. \]

In that time, \(\Delta t_i, l_i, \) and \(V_i^* \) will be computed as follows:

\[\Delta t_i = \Delta t_{i-1} \]
\[l_i = l_{i-1} + d_{i-1} + L_v \]
\[V_i^* = V_i^o - a_e \cdot (\Delta t_{i-1} - \delta_i). \]

For case 1, a time instant \(t_m \) should exist when

\[\exists t_m \hspace{1em} V_i^o(t_m - t_0) - \frac{1}{2} a_e \cdot (t_m - t_0 - \delta_i)^2 = V_{i-1}^o(t_m - t_0) - \frac{1}{2} a_e \cdot (t_m - t_0 - \delta_{i-1})^2 + L_v \]

where \((\eta = a_e) \) in the case of \(i = 2, \) or \((\eta = a_e) \) for \(3 \leq i \leq S \). During that time, the values of \(\Delta t_i, l_i, \) and \(V_i^* \) are computed as follows:

\[\Delta t_i = t_m - t_0 \]
\[l_i = V_i^o(t_m - t_0) - \frac{1}{2} a_e \cdot (t_m - t_0 - \delta_i)^2 \]
\[V_i^* = V_i^o - a_e \cdot (t_m - t_0 - \delta_i). \]

B. Simulation Results

The simulations are conducted using the network simula-
tor (NS-2) [29] based on the collision model delineated in 794
Section IV-A. The simulation parameters are listed in Table II.

The transmission ranges of the vehicles and the minimum
intervehicular distance are set to 150 and 10 m, respectively.
The reason behind these choices is to have at least one SCH in 798
a simulated cluster. As comparison terms, we adopt 1) a CCA 799
system, which is based upon the IEEE MAC protocol that uses 800
the exponential back-off algorithm for calculating contention 801
windows of the vehicles [17] and 2) the absence of a CCA 802
system, whereby the traditional reaction of drivers is considered 803
to be the key factor in avoiding collisions.

We simulate two scenarios. In the first scenario, all vehicles 805
move at a steady speed, and the intervehicular distance is chosen 806
from within the interval [10 m, 30 m]. On the other hand, in the second scenario, the intervehicle distance is arbitrarily selected from within the range [10 m, 30 m] for each pair of collocated vehicles. Each vehicle travels at varying speeds. The CH, which travels at the front of the cluster, moves at a speed that is selected from an interval [22 m/s, 42 m/s]. The velocities of the rest of the cars are carefully chosen not to cause collisions among them. An emergency situation is simulated by having the CH collide with a fixed object that compels the CH to slow down rapidly. Consequently, a number of warning messages are broadcast. The simulation results that we provide here are an average of multiple simulation runs.

The number of collisions for various intervehicle distances in the case of the proposed C-RACCA, CCA, and no-CCA systems are plotted in Fig. 8. It can be deduced from this figure that the number of collisions decreases as the intervehicle distance increases significantly. The results demonstrate that the C-RACCA scheme helps save many vehicles from colliding into others. Fig. 9 exhibits a similar performance in the case of scenario 2. As shown in this figure, the reduced number of vehicle collisions achieved by the C-RACCA approach, even when the CH travels at a reasonably high speed, in contrast with CCA and no-CCA systems, is attributable to its ability to swiftly inform the cluster members regarding the emergency situation. Fig. 10 sheds more light on this issue by indicating the fact that vehicles experience significantly high delays in delivering/receiving the warning messages in case of the traditional CCA system. It is worth stressing that these latencies also include the delay in receiving the first warning message. Indeed, in the proposed system, not all vehicles reforward the warning message. In fact, only the CH and SCHs do so. Fig. 10 also demonstrates that in the case of the CCA system, the ten last vehicles at the rear of the cluster experience a relatively longer time to disseminate the warning messages. The reason behind this is the occurrence of multiple MAC collisions owing to the concurrent delivery of warning messages by the first ten cars. On the contrary, the envisioned C-RACCA system ascertains that only the vehicle which encountered the emergency situation (e.g., the CH in our simulation scenarios) and/or SCHs are in charge of delivering the warning messages. This provision assists C-RACCA in avoiding message collisions. Consequently, a large number of vehicles receive the warning message in a relatively short latency. Indeed, this enables the vehicles to respond to the emergency situation in a swift manner.

The superior performance of the proposed C-RACCA scheme is further evident from Figs. 11 and 12. Fig. 11 exhibits that the relative intervehicle distances (after the vehicles have stopped) are longer in the case of the proposed C-RACCA scheme compared with the other naive approaches. It should be noted that in most cases, a significantly long relative distance between two adjacent vehicles C_i and C_{i+1} suggests that C_{i+1} responded rapidly to the emergency situation to achieve a sufficiently long distance from the vehicle ahead, i.e., C_i. This distance is of high importance in our evaluation due to the
fact that \(C_i \) may explode at the time of collision (e.g., due to fuel leakage and so forth). Additionally, Fig. 12 demonstrates another important feature of the C-RACCA system in terms of the smaller magnitude of the relative velocity of each vehicle at the time of collision. This mitigates the severity and impact of any collision.

V. CONCLUSION

In this paper, we have proposed an effective collision-avoidance strategy for vehicular networks that we refer to as the C-RACCA system. As it can be inferred from its name, the C-RACCA forms clusters of vehicles that belong to the same group. A number of features pertaining to the movements of the vehicles are taken into account to construct effective clusters. We envisioned a set of mechanisms to enable vehicles to join or depart from a specific cluster. Indeed, the clustering mechanisms lead to various heterogeneous clusters, i.e., multiple clusters with different sizes, independent cluster heads, and different numbers of subcluster heads.

The other contribution of the C-RACCA system lies in the fact that it enhances existing MAC protocols to ascertain relatively short latencies in disseminating warning messages after an emergency situation is detected. For each vehicle, an emergency level is defined based upon its order in the cluster with respect to the moving direction of the cluster. In the C-RACCA system, the warning message latency is calculated in such a manner that it is inversely proportional to the emergency level of the considered vehicle. This reflects the probability of the vehicle to encounter an emergency event in the cluster.

The second rational lies in the fact that the latency estimation takes into consideration the velocities and intervehicle distances of adjacent vehicles and, thereby, manages to avoid colliding with each other.

Various simulations have been conducted in two unique scenarios to verify and compare the performance of the proposed C-RACCA system with those of the naive CCA and no-CCA approaches. The simulation results clearly exhibit the applicability of the C-RACCA approach in VANET environments since it reduces both the number of collisions and the impacts of collisions when they inevitably occur.

Admittedly, our work has considered a distribution with a predetermined skew factor (i.e., \(\omega \)) to estimate the emergency levels of the vehicles that are used to compute the warning message delivery latency. However, in the future, further investigation regarding any possible correlation between the skew factor and the attributes of a specific cluster (in terms of its average intervehicle distance, average velocity, size, and so forth) is required. The relationship between the transmission ranges of the vehicles in a given cluster and the size of that cluster also needs further investigation. In addition, the impact of channel conditions on the delivery of warning messages and their overall impact on the C-RACCA’s performance also deserve further studies. Furthermore, the management of intercluster communications may also open up interesting research scopes.

These form some of our future research into this particular area of research.

REFERENCES

G. Yan, S. Olairu, and M. C. Weigle, “Providing V ANET security through1005
H. Menouar, F. Filali, and M. Lenardi, “A survey and qualitative analy-992
F. Chausse, J. Laneurit, and R. Chapuis, “Vehicle localization on a dig-985
A. Benslimane and A. Bachir, “Inter-vehicle geocast protocol support-977
Taleb et al.: RISK-CONSCIOUS AND COLLABORATIVE VEHICULAR COLLISION AVOIDANCE SYSTEM 13
975 position-based forwarding on highways,” in Proc. 3rd Int. WIT, Hamburg,
976 Germany, Mar. 2006, pp. 199–204.
977 [20] A. Benslimane and A. Bachir, “Inter-vehicle geocast protocol support-
978 ing non equipped GPS vehicles,” in Proc. Int. Conf. ADHOC-NOW,
981 [21] M. Chen, D. Hachnel, J. Hightower, T. Sohn, A. LaMarca, I. Smith,
982 D. Chemelev, J. Hughes, and F. Potter, “Practical metropolitan-scale
983 positioning for GSM phones,” in Proc. 8th UbiComp, Orange County,
985 [22] F. Chausse, J. Laneurit, and R. Chapuis, “Vehicle localization on a dig-
986 tial map using particles filtering,” in Proc. IEEE Intell. Vehicles Symp.,
988 [23] H. Wu, R. Fujimoto, R. Guensler, and M. Hunter, “MDDV: A mobility-
989 centric data dissemination algorithm for vehicular networks,” in Proc.
991 pp. 47–56.
993 sis of MAC protocols for vehicular ad hoc networks,” IEEE Wireless
995 [25] O. Tickoo and B. Sikdar, “Queuing analysis and delay mitigation in
996 IEEE 802.11 random access MAC-based wireless networks,” in Proc.
998 [26] Standard Specification for Telecommunications and Information Ex-
999 change Between Roadside and Vehicle Systems—5 GHz Band Dedicated
1000 Short Range Communications (DSRC) Medium Access Control (MAC)
1002 [27] Z. Huang, C. Shen, C. Srisathapornphat, and C. Jaikaeo, “A busy tone-
1003 based directional MAC protocol for ad hoc networks,” in Proc. IEEE
1009 nsnam/ns/.

Tarik Taleb (S’04–M’05) received the B.E. degree (with distinction) in information engineering and the M.Sc. and Ph.D. degrees in information sciences from Tohoku University, Sendai, Japan, in 2001, 2003, and 2005, respectively. He is currently a Senior Researcher with NEC Europe Ltd., Heidelberg, Germany. Prior to his current position and until March 2009, he was an Assistant Professor with the Graduate School of Information Sciences, Tohoku University. From October 2005 until March 2006, he was a Research Fellow with the Intelligent Cosmos Research Institute, Sendai. He is on the editorial board of a number of Wiley journals. His research interests include architectural enhancements to third-generation partnership project networks 2024 (i.e., LTE), mobile multimedia streaming, wireless networking, intervehicular communications, satellite and space communications, congestion control protocols, network management, handoff and mobility management, and network security. His recent research has also focused on on-demand media transmission and multicast environments.

Khaled Ben Letaief (S’85–M’86–SM’97–F’03) received the B.S. degree with distinction in electrical engineering from Purdue University, West Lafayette, IN, in December 1984 and received the M.S. and Ph.D. degrees in electrical engineering from Purdue University in August 1986 and May 1990, respectively.

From January 1986 and as a Graduate Instructor with the School of Electrical Engineering, Purdue University, he taught courses in communications and electronics. From 1990 to 1993, he was a faculty member with the University of Melbourne, Melbourne, Australia. Since 1993, he has been with the Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong, where he is currently the Dean of Engineering. He is also a Chair Professor of electronic and computer engineering as well as the Director of the Hong Kong Telecom Institute of Information Technology and the Wireless Integrated Circuit System Design Center. He has served as a consultant to different organizations. His current research interests include wireless access, orthogonal frequency-division multiplexing, cooperative networks, cognitive radio, multiple-input–multiple-output, and beyond third-generation systems. In these areas, he has over 400 journal and conference papers and has given invited keynote talks as well as courses all over the world. He has also received several national and international awards, including the prestigious 1998 IEEE Communications Society Publications Exemplary Award, and the 2007 IEEE Communications Society Best Paper Award, with the latest being the prestigious 2009 IEEE Marconi Prize Paper Award in Wireless Communications. He is currently serving as the Vice President for Conferences of the IEEE Communications Society.
AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Which section are you exactly referring to here?
AQ2 = What does CA stand for? Please write it out in full.
AQ3 = What does ANR stand for?

END OF ALL QUERIES
Toward an Effective Risk-Conscious and Collaborative Vehicular Collision Avoidance System

Tarik Taleb, Member, IEEE, Abderrahim Benslimane, Senior Member, IEEE, and Khaled Ben Letaief, Fellow, IEEE

Abstract—In this paper, we introduce a cooperative collision-avoidance (CCA) scheme for intelligent transport systems. Unlike contemporary strategies, the envisioned scheme avoids flooding the considered vehicular network with high volumes of emergency messages upon accidental events. We present a cluster-based organization of the target vehicles. The cluster is based upon several criteria, which define the movement of the vehicles, namely, the directional bearing and relative velocity of each vehicle, as well as the intervehicular distance. We also design a risk-aware medium-access control (MAC) protocol to increase the responsiveness of the proposed CCA scheme. According to the order of each vehicle in its corresponding cluster, an emergency level is associated with the vehicle that signifies the risk of encountering a potential emergency scenario. To swiftly circulate the emergency notifications to collocated vehicles to mitigate the risk of chain collisions, the medium-access delay of each vehicle is set as a function of its emergency level. Due to its twofold contributions, our adopted strategy is referred to as the cluster-based risk-aware CCA (C-RACCA) scheme. The performance of the C-RACCA system is verified through mathematical analyses and computer simulations, whose results clearly verify its effectiveness in mitigating collision risks of the vehicles arising from accidental hazards.

Index Terms—Cooperative collision avoidance (CCA), intervehicular communication (IVC), vehicular ad-hoc network (VANET).

I. INTRODUCTION

LONG with the ongoing advances in dedicated short-range communication (DSRC) and wireless technologies, intervehicular communication (IVC) and road–vehicle communication (RVC) have become possible, giving birth to a new network-type called vehicular ad-hoc network (VANET). The key role of VANETs can play in the realization of intelligent transport systems has attracted the attention of major car manufacturers (e.g., Toyota, BMW, and Daimler-Chrysler). A number of important projects have been subsequently launched.

Crash Avoidance Metrics Partnership (CAMP), Chauffeur in Europe Union, CarTALK2000, FleetNet, and DEMO 2000 by the Japan Automobile Research Institute (JSK) are a few notable examples.

VANETs can be used for a plethora of applications, ranging from comfort and infotainment applications to onboard active safety applications. The latter are the most attractive and promising ones. Such applications assist drivers in avoiding collisions. They coordinate among vehicles at critical points such as intersections and highway entries.1 Via an intelligent 48 dissemination of road information (e.g., real-time traffic congestion, high-speed tolling, or surface condition) to vehicles in the vicinity of the subjected sites, collisions among vehicles can be prevented, and on-road vehicular safety can be accordingly enhanced.

To facilitate safety applications in VANETs, intraplatoon cooperative collision-avoidance (CCA) techniques have significantly evolved recently. With CCA systems, the number of car accidents and the associated damage can be significantly reduced. The prime reason for deploying CCA systems is that the substantially long reaction time (i.e., 0.75–5.1 s [2]) of any human driver to apply the brake following an emergency scenario. The potential damage inflicted by such a reaction time of an individual driver is, indeed, remarkably high in case of a close formation of vehicles, which travel at high speeds. Instead of having drivers to traditionally react to the brake lights of vehicles immediately ahead, CCA systems enable vehicles to promptly react in emergency situations via a fast dissemination of warning messages to the vehicles in the platoon. However, the effectiveness of a given CCA system depends not only on the reliability of the circulated warning messages but on the specific nature of the emergency situation at hand as well. To this end, the underlying medium-access control (MAC) protocols of the concerned VANET need to make sure that the medium-access delay associated with each vehicle, under an emergency event, remains as short as possible. Driven by this need, we envision an effective CCA scheme, which takes into account a risk-aware MAC protocol, which we have specifically tailored for VANET environments.

Furthermore, we envision clusters of vehicles based on their movement traits, including directional headings and relative velocities, and on the intervehicular distances as well. In a given platoon, each vehicle is assigned an emergency level, which reflects the risk associated with that particular vehicle to fall into an accidental hazard, e.g., collision with the other cars in the platoon. This cluster-based approach also permits us to set the medium-access delay of an individual vehicle as a function of its emergency level. By so doing, the envisioned strategy attempts to provide the drivers of the vehicles with 87 warning messages pertaining to the emergency scenario with 88

1An abridged version of this work has appeared in [1].
the shortest delivery latencies possible. This feature should prevent chain collisions or reduce the associated damage. Our adopted strategy is referred to as the cluster-based risk-aware CCA (C-RACCA) scheme due to its twofold contributions, namely, the formation of clusters and the adoption of the risk-conscious medium-access protocol.

The remainder of this paper is organized as follows. Relevant research on MAC protocols in VANET environments is presented in Section II. The operations of the envisioned C-RACCA system comprising its clustering mechanism and the risk-aware MAC protocol are delineated in detail in Section III. The performance of the C-RACCA system is evaluated in Section IV, which justifies the simulation setup and provides an in-depth analysis of the simulation results. Concluding remarks follow in Section V.

II. RELATED WORK

VANETs are well characterized for their rapidly and dynamically changing topologies due to the fast motion of vehicles. Unlike traditional mobile ad hoc networks (MANETs), the nodes’ mobility in VANETs is constrained by predefined roads and restricted speed limits. Additionally, nodes in VANETs can be equipped with devices with potentially longer transmission ranges, rechargeable source of energy, and extensive on-board storage capacities. Processing power and storage efficiency are, thus, not the issue in VANETs that they are in MANETs.

The work by Little and Agarwal [3] serves as an inspiring one for utilizing clusters of vehicles in VANETs without the use of fixed infrastructures (e.g., access points, satellites, and so forth). The hypothesis of this work states that the vehicles, which travel along the same directed pathway, can form interconnected blocks of vehicles. Thus, the notion of cluster of vehicles is adopted whereby a header and a trailer identify a particular cluster that is on the move. Little and Agarwal used multihop routing in these blocks or clusters of vehicles to obtain an optimum propagation rate to disseminate information pertaining to traffic and road conditions. For this purpose, they characterized the bounds of information propagation under different traffic patterns. In addition, by combining delay-tolerant networking and MANET techniques, they also implemented the safety information dissemination algorithm as a routing protocol.

To inform all the vehicles in a risk area (along a highway) regarding an emergency scenario (e.g., an accident or an impediment on the road) via alarm broadcasts, a novel communications technique called the intervehicles geocast (IVG) protocol was proposed [4]. IVG considers a vehicle to be in the risk area if the accident/obstacle is in front of that vehicle. Based on the temporal and dynamic attributes of the locations, speeds (i.e., highway), and driving directions of the vehicles in the risk zone, IVG defines multicast groups of these vehicles. Since IVG does not maintain neighboring cars’ list at each vehicle, the overall signaling overhead is reduced, which saves precious bandwidth to disseminate the actual warning messages according to a defer time algorithm. In addition, relays are deployed dynamically in a distributed manner (in each driving direction) that rebroadcasts the warning messages to ensure their delivery to the vehicles in the risk area.

The broadcast storm problem, in which there is a high level of contention and collisions at the MAC level due to an excessive number of broadcast packets, is presented in the VANET context in [5]. The serious nature of the broadcast storm problem is illustrated in a case study of four-lane highway scenario. This work proposes three lightweight broadcast techniques to mitigate the broadcast storms by reducing redundant broadcasts and packet loss ratio on a well-connected vehicular network. This work, however, does not consider addressing the broadcast storm issue at the MAC layer (i.e., the real source of the problem), which may be able to mitigate the problem more effectively.

To prevent accidents that may occur due to late detection of distant/roadway obstacles, Gallagher et al. [6] emphasized the need for longer range vehicular safety systems that are capable of real-time emergency detection. To this end, they investigated the applicability of DSRC resources to improve the efficiency 161 and reliability of vehicle safety communications. This work 162 specifically partitions crucial safety messages and the nonsafety 163 ones. The former is termed as “safety-of-life” messages, which are assigned the highest priority and transmitted on a dedicated safety channel. The underlying MAC and physical (PHY) 164 layers, guided by the higher layers, enable the awareness and separation of safety and nonsafety messages.

In the survey conducted by Hartenstein and Laberteaux [7], the parameters that may influence the probability of packet reception in VANETs have been pointed out, including vehicular traffic density, radio channel conditions, transmission power, transmission rate, contention window sizes, and the channel prioritization of packets. This work also mentions that for 172 packets prioritization in particular, the enhanced distributed channel access (EDCA), which is also part of 802.11-2007 173 specifications, can be used. Four distinct access categories, each 174 with its own channel access queue, are provided in this scheme, 175 whereby the interframe space and the contention window size can be tailored to the specific needs of the target VANET. Indeed, Torrent-Moreno [8] demonstrates that, in contrast with 181 the simple carrier sense multiple access (CSMA) scheme, the channel access time and probability of packets reception in 182 prove to an extent under EDCA scheme, even in the case of a 183 saturated channel.

Sichitudu and Kihl [9] survey IVC systems and focus on 186 public safety applications toward avoiding accidents and loss of lives of the passengers. Their study points out that safety applications are inherently delay sensitive, e.g., vehicular warning systems to avoid side crashes of cars and trains at crossings, deploying safety equipments such as inflating air bags and tightening seat belts, and so forth. The system penetration of such applications is, however, subject to determining the zone of relevance as accurately as possible. For instance, when an accident in the right lane of a highway occurs, it is considered in the covered studies to only affect vehicles approaching the accident from behind. The survey also describes the available communication technologies, focusing on their PHY and MAC layers, that may facilitate vehicular communications to disseminate emergency messages. The studied protocols that are considered to be suited for intervehicle emergency communications include IEEE 802.11 and its DSRC standard, Bluetooth 202
(standardized within IEEE 802.15.1), and cellular models such as the global system for mobile communications/general packet radio service and third-generation (3G) systems like the universal terrestrial mobile telecommunications system (UMTS), the UMTS terrestrial radio access network, and so on.

Toor et al. [10] suggest that three difficulties arise in the PHY/MAC layer in VANETs. The first problem involves sharing the medium to effect robust transmission among the vehicles. The second problem consists of traffic jams or postaccidental scenarios whereby the target VANET exhibits a rather high density of vehicular nodes. The third and most significant problem identified in this work is the support of adequate emergency applications to guarantee quality of service (QoS) in wireless environments. The study elucidates that there exist two main approaches for sharing the medium that may be used for vehicular communications, namely 1) the CSMA-like random scheme and 2) the time-division multiple-access (TDMA)-like controlled scheme. A prime example of the former approach is IEEE 802.11, which is stated to be the most dominant MAC protocol for developing safety applications for vehicular networks. As examples of the latter, the study refers to a number of other technologies derived from 3G telecommunications systems based upon variations of the pure ALOHA protocol [11] such as the slotted ALOHA [12] and reliable reservation ALOHA (RR-ALOHA) [13] access schemes. Recent works such as [14] have also considered QoS issues in VANETs.

As stated earlier, a class of unique applications has been devised for VANETs. For each application, different techniques have been proposed. From the observation that routing protocols originally designed for MANET networks may be suitable only for delay-tolerant content-delivery applications (e.g., in-vehicle Internet) [15], the work in [17] proposed a set of context-aware broadcast-oriented forwarding protocols for delay-sensitive safety applications in VANETs (e.g., CCA systems). The packet-forwarding operation can be selective and based on the geographical locations and the moving directions of the source and the destination vehicles and the packet’s information content. Furthermore, mobility-oriented schemes such as “Mobility-centric approach for Data Dissemination in Vehicular networks” (MDDV) [23], which attempts to address the data delivery problem in a partitioned and highly mobile VANET topology, integrates the following three data-forwarding techniques: 1) the opportunistic-based scheme; 2) the trajectory-based scheme; and 3) the geographical forwarding scheme. The former refers to the fact that vehicle movements create the opportunity to pass messages and determine which vehicle to transmit/buffer/drop a message and when. The trajectory forwarding implies that the information is being propagated from the source to the destination. The geographical forwarding, on the other hand, means that the message is conveyed geographically closer to the destination along the source-to-destination trajectory. Localized algorithms specifically designed for vehicles are developed to exploit these data-forwarding schemes. By allowing multiple vehicles to actively propagate a given message, MDDV improves message-delivery reliability. While the aforementioned packet-forwarding protocols can reduce the number of signaling messages in a VANET, ensuring prompt delivery of critical warning messages is also crucial for CCA systems. For this purpose, there is a need to develop adequate MAC protocols.

Many of the MAC protocols that have evolved over the years are, however, not applicable to VANET environments. Among the contemporary MAC protocols, the IEEE 802.11 MAC specification is considered to be the leading choice among VANET designers as a means to provide safety applications [25]. The MAC protocol of IEEE 802.11 consists of a number of sophisticated mechanisms that rely on soft handshaking involving a number of signaling messages (e.g., request-to-send and clear-to-send messages) exchanged between the sender and the receiver. These mechanisms include the following: 1) CSMA with collision avoidance (CSMA/CA); 2) multiple access with collision avoidance (MACA); and 3) MACA for wireless with distributed coordinated function mode. More tailored MAC protocols for VANET environments are also evolving, as shown in the study conducted by Adachi et al. [16]. In addition, the following two techniques have evolved into safety-critical application domains such as CCA: 1) data prioritization [17], [26] and 2) vehicle prioritization. We focus on the latter in this paper whereby the emergency level associated with each vehicle in the considered VANET is taken into account to prioritize the vehicle. Intuitively, vehicles with high emergency levels should be always granted prompt access to the medium.

Provisioning security for protecting the vehicular positions in a VANET is also emerging as an active area of research. For example, Yan et al. [28] presented a novel approach that employs an on-board radar at each vehicle to detect neighboring vehicles and to confirm their announced coordinates. This notion of local security (i.e., specific to individual vehicles) is extended to achieve global security by using the following two techniques: 1) a preset position-based groups to form a communication network and 2) a dynamic challenging scheme to confirm the coordinate information sent by remote vehicles. Although the scope of our work in this paper does not cover these security aspects, we feel the importance to incorporate such safeguards to securely disseminate safety information/warning messages in VANETs in the future.

In this section, we initially provide a brief overview of the functionality of the traditional CCA system proposed by Biswas et al. [17] and point out its shortcomings. We then propose our C-RACCA system, which consists of adequate solutions to address these issues, namely, a dynamic clustering procedure to formulate clusters of vehicles, followed by a uniquely designed risk-aware MAC protocol.

A. Shortcomings of the Traditional CCA Systems

In traditional CCA systems [17], upon an emergency situation, a vehicle in the considered platoon dispatches warning messages to all other vehicles behind it. A recipient takes into account the direction of the warning message arrival with respect to its directional bearing and decides whether to pass
the message to other vehicles or not. Indeed, the message will be ignored if it comes from behind. To ensure a platoon-wide coverage, the message is transmitted over multiple hops. However, this approach leads to the following two problems: 1) generation of a large number of messages, which literally flood the VANET, and 2) generation of redundant messages (originated from different vehicles) pertaining to the same emergency event. Consequently, message collisions are more likely to occur in the access medium with the increasing number of vehicles in the platoon. In addition, this naive approach of relaying the emergency message contributes to cumulative communication latencies, which, in turn, lead to a substantially high delay in delivering the warning message from the platoon front to the vehicles located at the rear of the platoon formation.

To make matters even worse, in the case of multiple failed message retransmissions owing to excessive MAC collisions, this message-delivery latency increases further. To overcome these shortcomings of the existing CCA systems, we offer a novel approach that dynamically forms clusters of the vehicles in a platoon.

B. Dynamic Clustering of Vehicles

Prior to a detailed description of the envisioned clustering mechanism, it is essential to point out a number of assumptions regarding the considered VANET environment, as listed in the following.

1) To accurately estimate the current geographical location, each vehicle in the platoon consists of global positioning systems (GPSs) or similar tracking modules. It should be noted that the knowledge pertaining to the real-time coordinates of the vehicular nodes is an assumption made by most protocols and applications. Indeed, this is a reasonable enough assumption pointed out by Boukerche et al. [18] because the GPS receivers can easily be deployed on vehicles. However, as VANETs are evolving into more critical areas and becoming more reliant on localization systems, there may be certain undesired problems in the availability of GPS in certain scenarios (e.g., when the vehicles enter zones where GPS signals may not be detected, such as inside tunnels, underground parking, and so forth). Indeed, there exist several localization techniques, such as dead reckoning [19], cellular localization [21], and image/video localization [22], that may be used in VANETs so that this GPS limitation may be overcome. In addition, GEOCAST [20], which is one of our earlier developed protocols, may be used so that it is still possible to support some vehicles, which have lost GPS signals, or do not have GPS on board, to learn from the other vehicles and position themselves.

2) To facilitate communications, two distinct wireless channels are considered to exchange signaling messages to formulate vehicles’ clusters and to issue/forward warning messages, respectively.

3) Each vehicle is assumed to be capable of estimating its relative velocity with respect to neighboring vehicles. In addition, it is also considered to be able to compute, via adequately deployed sensors, intervehicular distances.

4) When a vehicle receives a warning message, it can estimate the direction of the message arrival, i.e., whether the received warning originated from a vehicle from the front or the rear.

5) Each vehicle is considered to have knowledge on its maximum wireless transmission range, which is denoted by T_r. A vehicle constantly uses this parameter to update its current transmission range R in the following manner:

$$R = T_r \cdot (1 - \epsilon), \quad 0 < \epsilon \leq 1$$

where ϵ refers to the wireless channel fading conditions at the current position. Equation (1) is used for simple estimation of the practically possible transmission range from the given surrounding conditions that affect the maximum transmission range of the vehicle. To compute this, a simple parameter ϵ is used, which reflects the surrounding conditions. If the vehicle is currently moving in the downtown, then its transmission range will be lower than the maximum possible one. Because, there will be many obstacles (e.g., high-rise buildings, industries, and other installations), which will interfere with the vehicle’s wireless signal. To reflect this situation, ϵ in (1) is set to a high value in a downtown scenario. On the other hand, when a car is moving in the suburbs, there are fewer obstacles affecting the vehicle’s transmitted signals. Therefore, in such a scenario, low values of ϵ are used to illustrate that the vehicle may use a transmission range that is closer to the maximum possible one. GPS or other positioning systems (e.g., Galileo) are used to obtain the terrain information so that the appropriate values of ϵ in a given location can be appropriately estimated.

Additionally, we consider, for clustering purposes, a platoon of vehicles, which travel along the same road toward the same direction. Consistent with previous work in this domain [15], the envisioned grouping of vehicles is, thus, based upon their movement directions. Directional-antenna-based MAC protocols [27] may be utilized to group the vehicles more accurately, so that the transmission range of vehicles is split into M transmission angles of equal degrees $(360/M)$. By assigning each transmission angle to a unique vehicle group, M groups can thus be formulated.

Similar in spirit with the assumptions in [15] and [27], our approach considers, in forming a cluster, only the vehicles that belong to the same group in terms of moving on the same road toward the same direction. Fig. 1 portrays an example of three such clusters. As depicted in this figure, a vehicle may act as a special node, i.e., a cluster head (CH) or a subcluster head (SCH), or may merely drive as an ordinary vehicle (OV). In the case of forming a CH, the vehicles are voluntarily required to advertise for the cluster while maintaining and updating their respective cluster tables. On the other hand, the first SCH node is selected as the last vehicle that is reachable by the 420 CH. Indeed, the SCH node may be used to define a subsequent SCH entity (i.e., the last vehicle reachable from this SCH node), and so forth. SCH nodes are in charge of relaying packets (e.g., emergency warning messages) from either a CH or from SCHs in front to other vehicles within the same cluster that lie outside.
Fig. 1. Example of three clusters.

426 the CH’s (or the front SCH’s) transmission range. In addition, a 427 SCH also aggregates information from OVs within its reach and 428 relays them to the CHs/SCHs in front. It should be noted that 429 it is a rare case to have a cluster containing a large number of 430 SCHs. In such case, the cluster size will be significantly large, 431 and vehicles will be more likely moving at very low speeds. 432 Thus, chain collisions will not happen in such case. Finally, 433 OVs comprise the ordinary members in the cluster that perform 434 no specific task.

435 As demonstrated in the example in Fig. 1, C_i refers to the 436 identification (ID) of vehicle i. For simplicity, we denote C_i−1 437 and C_i+1 as the vehicles ahead of and immediately behind C_i, 438 respectively. The transmission range of the former (provided 439 that it exists) reaches C_i. On the other hand, the latter is 440 reachable by C_i. The distance between a pair of vehicles C_j 441 and C_k is denoted by d_j,k. V_j and V_k refer to vehicle C_j’s 442 actual velocity and the relative velocity with respect to vehicle 443 C_k, respectively. Therefore, the magnitude of V_j,k is assumed 444 to be the same as that of V_k,j. Additional notations, which are 445 used in the clustering operation, are listed as follows:

1) \(\tau^p_i \): time required for a vehicle C_i to reach vehicle C_{i−1} 446 immediately ahead of it (i.e., \(\tau^p_i = d_{i−1,i}/V_{i−1,i} \));
2) \(\tau^h_i \): time required for a vehicle C_i to be reached by vehicle 447 C_{i+1} right behind it (i.e., \(\tau^h_i = d_{i,i+1}/V_{i,i+1} \));
3) \(\phi_j \): set of CHs or SCHs in front of vehicle C_j; this set 449 also belongs to C_j’s group;
4) \(\phi^{CH}_j \): the closest CH or SCH (ε \(\phi_j \)) in front of 450 vehicle C_j;
5) \(\psi_j \): set of CHs or SCHs behind vehicle C_j; this set also 451 belongs to C_j’s group;
6) \(\psi^{CH}_j \): the closest CH or SCH (ε \(\psi_j \)) behind vehicle C_j;
7) \(a_e \) and \(a_r \): emergency deceleration and regular decel- 454 eration, respectively, which indicate the occurrence of an 455 emergency event to trigger the transmission of critical 456 warning messages;
8) \(\delta \): the average reaction time of individual drivers (0.75 ≤ 457 \(\delta \leq 1.5 \) s).

458 For each vehicle C_i and its immediately following vehicle 459 C_{i+1}, we consider that no collision will occur between these 460 two vehicles, and therefore, they are safe, provided that their 461 distance \(d_{i,i+1} \) satisfies the following condition for \(\Gamma_{i,i+1} \) (i.e., \(\Gamma_{i,i+1}\)) denotes the negation of the condition):

\[
\Gamma_{i,i+1} \Leftrightarrow d_{i,i+1} > \text{Min} \left(\frac{V_{i+1} \cdot \delta + V_{i+1}^2}{2a_r}, \frac{V_{i+1}^2}{2a_e} \right) \tag{2}
\]

where \(\alpha \) represents a tolerance factor. In addition, \(d_{\text{max}} \) denotes a safety distance in which if two vehicles are distant, no collision will occur between the two vehicles, regardless of 470 the vehicles’ velocities (e.g., in case of a maximum velocity 471 \(V_{\text{max}} = 180 \) km/h, \(d_{\text{max}} = V_{\text{max}} \cdot 1.5 \) s = 75 m). It should be 472 noted that the direction of the vehicles is not included in (2) 473 since we consider the vehicles to be traveling along the same 474 direction in the same lane.

475 Using the above notations, for any vehicle C_i, we have the 476 following lemma:

\[
\exists C_{i−1} \Leftrightarrow \phi_i \neq \emptyset \tag{3}
\]

\[
\exists C_{i+1} \Leftrightarrow \psi_i \neq \emptyset \tag{4}
\]

The proof of the lemma is trivial.

Three specific scenarios pertaining to a vehicle may exist in 479 the envisioned clustering operation. A vehicle may be in one of 480 the following three states.

1) It starts its engine and gets on a road.
2) It decides to travel in a different direction. Consequently, 483 it leaves its old group \(G_o \) and joins a new group of 484 vehicles, which is denoted by \(G_n \).
3) It continues to travel on the same road without changing 486 its direction. However, it increases or decreases its travel- 487 ing speed.

488 In the remainder of this subsection, we describe the clus- 489 tering mechanism in detail by focusing on each of the above 490 scenarios.

1) Joining a Group for the First Time: A vehicle C_i, after it 492 gets on a road, initially broadcasts a CH solicitation message 493 to the neighboring vehicles, which are assumed to belong to 494 group \(G_o \). The CH solicitation message queries the other 495 vehicles regarding the CH of \(G_o \). Meanwhile, C_i also initiates 496 a timer \(\theta \). The following two cases exist: 1) \(C_i \) receives no 497 response, or 2) \(C_i \) receives at least one affirmative response 498 to its initial query prior to expiration of \(\theta \). In the former case, 499 where \(\phi_i = \psi_i = \emptyset \), C_i decides to assume the role of CH 500 in \(G_n \) and starts constructing its own cluster. In the latter 501 case, C_i needs to take into consideration the responses from 502 other CH(s). At first, C_i verifies if any CH ahead of it has 503 also transmitted a CH advertisement message. Otherwise, if 504 \(\phi_i = \emptyset \), from the fact that \(\psi_i \neq \emptyset \), C_i checks whether it 505 maintains long enough distance \(d_{i,i+1} \) with \(C_{i+1} \), which im- 506 mediately follows it from behind. This verification is required 507 to ascertain the safety condition \(\Gamma_{i,i+1} \) (described earlier).

If \(\Gamma_{i,i+1} \) holds, \(C_i \) constructs its own cluster and declares 509 itself as the CH of this newly formed cluster. Otherwise (i.e., \(\Gamma_{i,i+1} \)) \(C_i \) takes over from \(\psi_i^{CH} \), the CH behind it by 511 designating itself as the new CH (i.e., \(C_i = \phi_i^{CH} \)).

On the other hand, if \(C_i \) obtains a CH advertisement message 513 from at least one CH ahead of it (i.e., \(\phi_i \neq \emptyset \)), it verifies whether 514
the distance to the vehicle immediately ahead of it (\(C_{i-1}\)) and belonging to the cluster CH is sufficiently large to avoid collision with \(C_{i-1}\). \(C_i\) constructs its own cluster by designating itself as the CH, provided that 1) the condition \(\Gamma_{i,i-1}\) holds and 2) no vehicle follows it from behind (\(\psi_i = \emptyset\)). If (\(\psi_i \neq \emptyset\)), the vehicle will check its distance to the vehicle right behind it and behave in a way similar to the case when (\(\phi_i = \emptyset, \psi_i \neq \emptyset\)). On the other hand, if the condition \(\Gamma_{i,i-1}\) persists, \(C_i\) is required to join the cluster formed by \(\phi_{CH_i}\).

Table I

All Possible Cases for a Vehicle \(C_i\) Joining for the First Time a Given Group

<table>
<thead>
<tr>
<th>(\psi_i = \emptyset)</th>
<th>(\psi_i \neq \emptyset)</th>
<th>(\phi_i = \emptyset)</th>
<th>(\phi_i \neq \emptyset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form own cluster</td>
<td>Form own cluster</td>
<td>Take authority of (\psi_i^{CH})</td>
<td>Form own cluster</td>
</tr>
<tr>
<td>(\Gamma_{i,i+1})</td>
<td>(\Gamma_{i,i+1})</td>
<td>(\Gamma_{i,i-1})</td>
<td>(\Gamma_{i,i-1})</td>
</tr>
</tbody>
</table>

![Diagram](image)

Fig. 2: Steps required for a vehicle to join a group for the first time.

A vehicle \(C_i\), which desires to join a given cluster, issues a self notification (SN) message that contains the vehicle’s ID, current location, and transmission range to the concerned CH. Upon receiving the SN, the CH treats it as a solicitation request from \(C_i\) to join the cluster. The CH then adds \(C_i\) into its cluster table and informs the rest of the cluster members via an updated cluster advertisement (CA) message, which contains the IDs of all the involved entities including the cluster, the CH, the SCH(s), and the OVs. In the case that a new vehicle emerges as a new CH in the considered cluster, the previous CH needs to transfer the most recently updated cluster table to the new CH, which, in turn, broadcasts an updated CA packet to the cluster members to inform them regarding the changes.

2) Departure From a Group and Joining a New One: As mentioned earlier, the second scenario consists of a moving vehicle \(C_i\) that changes its direction, which results in its departure from its old group \(G_o\) to a new group \(G_n\). \(C_i\), at first, informs \(G_n\) about the departure event. Upon joining \(G_n\), \(C_i\) either forms its own cluster or joins a preexisting one following the previously described steps in Section III-A1.

The departure of \(C_i\) from \(G_o\) may yield three distinct cases, namely, whether \(C_i\) was the CH, a SCH, or merely an OV in \(G_o\). These three cases are depicted in Fig. 3 and are delineated as follows.

1) If \(C_i\) is an OV in \(G_o\): In this case, departure operation of \(C_i\) from \(G_o\) is trivial since it only requires notifying either \(C_i\) the CH (denoted by \(CH_{C_i}\)) directly or the corresponding \(C_{i+1}\)
Fig. 3. Timeline diagram illustrating the departure event of a vehicle from a group.

Case 1: C_i is an OV

C_i notifies departure, SCH_{G_o} removes C_i from its subcluster table, and instructs CH_{G_o} about the event that prompts CH_{G_o}, in its own turn, to remove C_i’s entry from its subcluster table. Finally, CH_{G_o} issues an updated CA message to inform the rest of the members that C_i is no longer with G_o.

Case 2: C_i is a SCH

C_i, in this scenario, will assign C_{i-1} in G_o to assume the responsibility of the new SCH. In addition, C_i also transfers the subcluster table to C_{i-1} before departing G_o.

Case 3: C_i is the CH

C_i nominates another vehicle as the new CH, transfers the cluster table to the new CH prior to its departure from G_o. The new CH notifies the rest of the cluster members regarding the change via an updated CA message.

Fig. 4. Scenario showing a vehicle A turning onto a new street inclined by an angle α, while vehicles B and C continue moving straight on the same road.

$\begin{align*}
(x_C, y_C) &= (d_{B,A} + d_{A,C} + TV_C, 0) \\
(x_B, y_B) &= (d_{B,A} + TV_A \cos \alpha, TV_A \sin \alpha) \\
(x_B, y_B) &= (TV_B, 0)
\end{align*}$

$\frac{dT}{d\Phi}$

and B in the case of the following two different scenarios: 1) a highway scenario where vehicles B and C speed at 120 km/h, and vehicle A reduces its speed to 60 km/h upon turning onto the new road and 2) an urban scenario where vehicles B and C move at 60 km/h, and vehicle A turns at a speed equal to 30 km/h. The transmission range of vehicle A is set to 300 and 150 m in the highway and urban scenarios, respectively. Fig. 6 (derived from analytical computations) shows the time required to join a cluster in an urban and a highway scenario for different transmission ranges of vehicles. The figure clearly indicates that the time required for a vehicle to join a cluster is short in both scenarios and can be easily accommodated by the connectivity time shown in Fig. 5.
3) Intercluster Interactions Within a Particular Group: In a given group, the envisioned approach permits flexibility in forming and interacting among clusters belonging to the same group. For instance, a cluster may be split into two parts under certain conditions. The reverse may also be possible, whereby two clusters may merge into a single new cluster.

A particular cluster may be divided into two different clusters, provided that each of the two adjacent vehicles, which are denoted by C_i and C_{i+1} (both the vehicles are members of the same cluster) continues to travel at a relative speed $V_{i,i+1}$ until the intervehicular space $d_{i,i+1}$ satisfies the condition $\Gamma_{i,i+1}$. When this condition persists, C_{i+1} becomes the CH in one part of the former clusters containing the vehicles following C_{i+1} from behind. On the other hand, C_i joins another part of the previous cluster (consisting in vehicles C_i and beyond) as an OV.

Two existing clusters may be allowed to merge and evolve as a single one, provided that the distance between the CH of one of the two clusters (denoted by C_i) and the last vehicle C_{k+1} in the other cluster becomes so short that the condition Γ_{k+1} arises and holds. In this new cluster, C_i will handle the cluster table of the former cluster (i.e., to which C_k previously belonged). C_i then broadcasts an updated CA message to all the members to inform them regarding this change.

Conducting the aforementioned dynamic clustering operations, each group of vehicles moving along the same road and in the same direction will be organized into a number of clusters of different sizes and with independent cluster heads (see Fig. 1). The distance between two adjacent clusters is always long enough to avoid collisions between vehicles from both clusters. On the other hand, the intervehicle distance between two adjacent vehicles in a given cluster is always shorter than the “safety distance.” Therefore, if a vehicle in a cluster detects an emergency event and applies brakes, collisions among vehicles are likely to happen if drivers do not react promptly. As stated earlier, the exchange of signaling messages for the formation of clusters is performed on a channel different than the one used to transmit warning or emergency messages. MAC collisions due to the transmission of such signals, thus, should not impact the responsiveness of our proposed C-RACCA system.

C. Risk-Aware MAC Protocol

In this section, we describe the envisioned risk-aware MAC protocol. To lay the basis of this work, we consider studying the original MAC protocol in the IEEE 802.11 specifications, owing to its enormous popularity among VANET designers and researchers. For simplicity, the case of a single cluster is considered, whereby the vehicles are indexed based upon their order within the cluster with respect to their movement directions. In other words, without any loss of generality, C_1 refers to the cluster head, C_2 refers to the car immediately behind it, and so forth. In addition, we consider highway platoons for studying the envisaged risk-aware MAC protocol due to the fact that the likelihood of chain vehicle collisions is substantially high in a highway.

The 802.11 standard currently defines a single MAC that interacts with the following three PHY layers: 1) frequency-hopping spread spectrum with a slot time $\xi = 50 \mu s$; 2) direct sequence spread spectrum with a slot time equal to $\xi = 20 \mu s$; and 3) infrared with a slot time equal to $\xi = 8 \mu s$. The general concept behind the MAC protocol in IEEE 802.11 is that when a mobile node desires to transmit, it first listens to the desired channel. If the channel is idle (no active transmitters), the node is allowed to transmit. If the medium is busy, the node will defer its transmission to a later time and then to a further contention period. To resolve contention issues among different stations that are willing to access the same medium, an exponential back-off mechanism is executed in the IEEE 802.11 MAC protocol prior to the calculation of the contention period. This, however, significantly increases the data delivery latency. Consequently, in the case of delay-sensitive safety-critical CCA applications, the effectiveness of the original 802.11 MAC protocol decreases substantially. Indeed, high latency in the dissemination of a warning message will lead to scenarios where some vehicles will not have enough time to react, and vehicle collisions become inevitable. To cope with this shortcoming, we envision that the IEEE 802.11 back-off procedure should be substituted by a more suitable mechanism, which takes into account, in the contention window of a given vehicle.
In the following, we consider the example of Fig. 1 and assume which a particular vehicle needs to be informed, is computed. To achieve this, the maximum delay, within assigning \(\omega \) values close to zero results in a highly skewed distribution.

In our envisioned risk-aware MAC protocol, the contention window of a given vehicle \(C_i \) is computed based on the following equation (rather than employing the traditional exponential distribution). The collision between \(C_i \) and \(C_{i+1} \), however, becomes unavoidable when \(\delta_{i+1}^{\text{max}} = 0 \), which compels \(C_i \) to continue broadcasting warning messages to all vehicles within its transmission range. This provision is required to mitigate further damage inflicted on the platoon by preventing vehicles that are far behind from colliding with one another. Consequently, \(CW_i \) (i.e., the contention window for vehicle \(C_i \)) is set as follows:

\[
\delta_{i+1}^{\text{max}} = \max \left\{ \frac{V_i}{2} - \frac{a_e}{2} \left(\frac{V_i}{a_e} - \delta_i \right)^2 \right\}.
\]

To avoid collision between \(C_i \) and \(C_{i+1} \), the following inequality should be satisfied by taking into consideration \(l_i \) and \(l_{i+1}, \) respectively.

\[
l_{i+1} > l_i + d_{i+1,i} + L_v
\]

where \(L_v \) is the average vehicle length. This condition can be satisfied if and only if \(C_{i+1} \) is notified at maximum delay after the event-detection time (i.e., the time when \(C_i \) starts decelerating), i.e.,

\[
\delta_{i+1}^{\text{max}} = \max \left\{ \frac{V_i}{a_e} - \frac{a_e}{2} \left(\frac{V_i}{a_e} - \delta_i \right)^2 \right\}.
\]

Equation (7) is used to compute \(l_i \), and (8), shown below, is employed to derive \(l_{i+1} \) as follows:

\[
l_i = \frac{V_i^2}{2 \cdot a_e}
\]

\[
l_{i+1} = \frac{V_i}{a_e} - \frac{a_e}{2} \left(\frac{V_i}{a_e} - \delta_i \right)^2.
\]

that upon an emergency situation, vehicles \(C_i \) and \(C_{i+1} \) slow down their velocities at rates denoted by \(a_e \) and \(a_r \), respectively.

The next task is to calculate the maximum latency \(\delta_i \) since the detection of the emergency event, before which, \(C_i \) may be able to notify \(C_{i+1} \) (i.e., the vehicle following \(C_i \) from behind) of the event to avoid collision.

Vehicle \(C_i \) will be moving for a time period \(\Delta_i = (V_i / a_e) \) before it eventually stops. The distances traveled by vehicles \(C_i \) and \(C_{i+1} \) over \(\Delta_i \) are denoted by \(l_i \) and \(l_{i+1}, \) respectively.

Equation (7) is used to compute \(l_i \), and (8), shown below, is employed to derive \(l_{i+1} \) as follows:

\[
l_i = \frac{V_i^2}{2 \cdot a_e}
\]

\[
l_{i+1} = \frac{V_i}{a_e} - \frac{a_e}{2} \left(\frac{V_i}{a_e} - \delta_i \right)^2.
\]

To avoid collision between \(C_i \) and \(C_{i+1} \), the following inequality should be satisfied by taking into consideration \(l_i \) and \(l_{i+1}, \) respectively.

\[
l_{i+1} > l_i + d_{i+1,i} + L_v
\]

where \(L_v \) is the average vehicle length. This condition can be satisfied if and only if \(C_{i+1} \) is notified at maximum delay after the event-detection time (i.e., the time when \(C_i \) starts decelerating), i.e.,

\[
\delta_{i+1}^{\text{max}} = \max \left\{ \frac{V_i}{a_e} - \frac{a_e}{2} \left(\frac{V_i}{a_e} - \delta_i \right)^2 \right\}.
\]

The collision between \(C_i \) and \(C_{i+1} \), however, becomes unavoidable when \(\delta_{i+1}^{\text{max}} = 0 \), which compels \(C_i \) to continue broadcasting warning messages to all vehicles within its transmission range. This provision is required to mitigate further damage inflicted on the platoon by preventing vehicles that are far behind from colliding with one another. Consequently, \(CW_i \) (i.e., the contention window for vehicle \(C_i \)) is set as follows:

\[
CW_i = \left\{ \begin{array}{ll}
\sum_{j=0}^{k} (1 - \Omega_i)^j \cdot cw \cdot \xi, & \text{if } \delta_i^{\text{max}} = 0 \\
\min \left(\sum_{j=0}^{k} (1 - \Omega_i)^j \cdot cw \cdot \xi, \delta_i^{\text{max}} \right), & \text{otherwise.}
\end{array} \right.
\]

Unless otherwise specified, we set \(a_e, a_r, \) and \(L_v \) to 8 m/s\(^2\), 4.9 m/s, and 4 m, respectively. It should be noted that the values of \(a_e \) and \(a_r \) can be used by the system as an indication for an emergency event (e.g., \(a_e \) for cluster head, \(a_r \) or above for 729 other cluster members) to trigger the transmission of warning messages.

On detecting an emergency event, a vehicle issues a warning message to every member of its cluster (including SChs) that its transmission range currently covers. An SCh entity forwards this message to each of its subcluster members. It should be noted that a vehicle can safely discard messages originating from vehicles following it from the back. Otherwise (i.e., if the 737 warning message arrives from the front), the recipient vehicle, 738 at once, reacts to it based on the event type included in the 739
warning message. If the recipient vehicle encounters redundant warning messages, it takes action based on the first one only and discards the rest of the duplicate copies.

IV. PERFORMANCE EVALUATION

A. Collision Model

Before delving into details of the considered collision model in our simulation, we list a number of important parameters. Let S and L_v denote the size of the considered cluster (where the collisions are simulated) and the average vehicle length, respectively. As mentioned earlier, we are more keen on focusing on highway platoon scenarios, whereby the likelihood of collisions among the cluster members is much higher in contrast with urban scenarios. In our simulated highway platoon environment, we consider the most frequent scenario, whereby the CH (i.e., the vehicle in front of the platoon) identifies an emergency event. When the CH detects an emergency situation at time t_0, it slows down at an emergency deceleration a_e. The rest of the vehicles are considered to slow down at a regular deceleration a_r. For the sake of simplicity and without any loss of generality, we further assume that when a vehicle C_i collides with a vehicle C_{i-1} ahead of it, C_i immediately stops. On the other hand, C_{i-1} keeps on traveling without deceleration. Although this particular assumption does not conform to realistic scenarios, it does not change any of the rudimentary observations made so far on the envisioned C-RACCA framework.

Let Δt_i represent the latency since the detection of the emergency event until vehicle C_i stops or collides with its preceding vehicle C_{i-1}. The velocities of C_i at the time of the event detection and after Δt_i time are denoted by V_{i}^{o} and V_{i}^{s}, respectively. The delay incurred in delivering the warning message to C_i is referred to as δ_i. It is worth noting that all vehicles in the cluster (or subcluster) ought to experience similar δ_i, provided that the broadcast of warning messages by the CH/SCHs and their deliveries at the recipients are successful. As previously evaluated in (7), l_i defines the distance traveled by C_i since the event detection time until the vehicle completely stops or collides with C_{i-1}. The following equations pertain to the CH, i.e., C_1:

$$\Delta t_1 = \frac{V_{1}^{\text{o}}}{a_e}$$
(12)

$$l_1 = V_{1}^{\text{o}} \Delta t_1 - \frac{1}{2} a_e \cdot \Delta t_1^2$$
(13)

$$V_{1}^{\text{s}} = 0.$$
(14)

For other vehicles, except for the considered CH (i.e., C_i, $1 \leq i \leq S$), the conditions for two adjacent vehicles C_i and C_{i-1} not to collide can be obtained in terms of the following equations:

$$\Delta t_i = \frac{V_{i}^{\text{o}}}{a_r} + \delta_i$$
(15)

$$l_i = V_{i}^{\text{o}} \Delta t_i - \frac{1}{2} a_r \cdot (\Delta t_i - \delta_i)^2$$
(16)

$$V_{i}^{\text{s}} = 0.$$
(17)

On the other hand, in the case that C_i and C_{i-1} collide, the following two distinct cases may be envisaged.

Case 1) C_i collides while C_{i-1} is still moving.

Case 2) C_{i-1} stops, and then, C_i hits C_{i-1}.

The following inequality should hold in case 2):

$$l_{i-1} + d_{i,i-1} + L_v \leq l_i.$$
(18)

In that time, Δt_i, l_i, and V_{i}^{s} will be computed as follows:

$$\Delta t_i = \Delta t_{i-1}$$
(19)

$$l_i = l_{i-1} + d_{i,i-1} + L_v$$
(20)

$$V_{i}^{\text{s}} = V_{i}^{\text{o}} - a_r \cdot (\Delta t_{i-1} - \delta_i).$$
(21)

For case 1, a time instant t_m should exist when

$$\exists t_m \quad V_{i}^{\text{o}}(t_m - t_0) - \frac{1}{2} a_r \cdot (t_m - t_0 - \delta_i)^2 = V_{i-1}^{\text{o}}(t_m - t_0) - \frac{1}{2} a_e \cdot (t_m - t_0 - \delta_{i-1})^2 + L_v$$
(22)

where $(\eta = a_e)$ in the case of $i = 2$, or $(\eta = a_r)$ for $(3 \leq i \leq 789)$ S. During that time, the values of Δt_i, l_i, and V_{i}^{s} are computed as follows:

$$\Delta t_i = t_m - t_0$$
(23)

$$l_i = V_{i}^{\text{o}}(t_m - t_0) - \frac{1}{2} a_r \cdot (t_m - t_0 - \delta_i)^2$$
(24)

$$V_{i}^{\text{s}} = V_{i}^{\text{o}} - a_r \cdot (t_m - t_0 - \delta_i).$$
(25)

B. Simulation Results

The simulations are conducted using the network simulator (NS-2) [29] based on the collision model delineated in Section IV-A. The simulation parameters are listed in Table I. The transmission ranges of the vehicles and the minimum intervehicular distance are set to 150 and 10 m, respectively. The reason behind these choices is to have at least one SCH in a simulated cluster. As comparison terms, we adopt 1) a CCA system, which is based upon the IEEE MAC protocol that uses the exponential back-off algorithm for calculating contention windows of the vehicles [17] and 2) the absence of a CCA system, whereby the traditional reaction of drivers is considered to be the key factor in avoiding collisions.

We simulate two scenarios. In the first scenario, all vehicles move at a steady speed, and the intervehicular distance is chosen...
from within the interval [10 m, 30 m]. On the other hand, in the second scenario, the intervehicle distance is arbitrarily selected from within the range [10 m, 30 m] for each pair of collocated vehicles. Each vehicle travels at varying speeds. The CH, which travels at the front of the cluster, moves at a speed that is selected from an interval [22 m/s, 42 m/s]. The velocities of the rest of the cars are carefully chosen not to cause collisions among them. An emergency situation is simulated by having the CH collide with a fixed object that compels the CH to slow down rapidly. Consequently, a number of warning messages are broadcast. The simulation results that we provide here are an average of multiple simulation runs.

The number of collisions for various intervehicle distances in the case of the proposed C-RACCA, CCA, and no-CCA systems are plotted in Fig. 8. It can be deduced from this figure that the number of collisions decreases as the intervehicle distance increases significantly. The results demonstrate that the C-RACCA scheme helps save many vehicles from colliding into others. Fig. 9 exhibits a similar performance in the case of scenario 2. As shown in this figure, the reduced number of vehicle collisions achieved by the C-RACCA approach, even when the CH travels at a reasonably high speed, in contrast with CCA and no-CCA systems, is attributable to its ability to swiftly inform the cluster members regarding the emergency situation. Fig. 10 sheds more light on this issue by indicating the fact that vehicles experience significantly high delays in delivering/receiving the warning messages in case of the traditional CCA system. It is worth stressing that these latencies also include the delay in receiving the first warning message. Indeed, in the proposed system, not all vehicles reforward the warning message. In fact, only the CH and SCHs do so. Fig. 10 also demonstrates that in the case of the CCA system, the ten last vehicles at the rear of the cluster experience a relatively longer time to disseminate the warning messages. The reason behind this is the occurrence of multiple MAC collisions owing to the concurrent delivery of warning messages by the first ten cars. On the contrary, the envisioned C-RACCA system ascertains that only the vehicle which encountered the emergency situation (e.g., the CH in our simulation scenarios) and/or SCHs are in charge of delivering the warning messages. This provision assists C-RACCA in avoiding message collisions. Consequently, a large number of vehicles receive the warning message in a relatively short latency. Indeed, this enables the vehicles to respond to the emergency situation in a swift manner.

The superior performance of the proposed C-RACCA scheme is further evident from Figs. 11 and 12. Fig. 11 exhibits that the relative intervehicle distances (after the vehicles have stopped) are longer in the case of the proposed C-RACCA scheme compared with the other naive approaches. It should be noted that in most cases, a significantly long relative distance between two adjacent vehicles C_i and C_{i+1} suggests that C_{i+1} responded rapidly to the emergency situation to achieve a sufficiently long distance from the vehicle ahead, i.e., C_i. This distance is of high importance in our evaluation due to the
fact that C_i may explode at the time of collision (e.g., due to fuel leakage and so forth). Additionally, Fig. 12 demonstrates another important feature of the C-RACCA system in terms of the smaller magnitude of the relative velocity of each vehicle at the time of collision. This mitigates the severity and impact of any collision.

V. Conclusion

In this paper, we have proposed an effective collision-avoidance strategy for vehicular networks that we refer to as the C-RACCA system. As it can be inferred from its name, the C-RACCA forms clusters of vehicles that belong to the same group. A number of features pertaining to the movements of the vehicles are taken into account to construct effective clusters. We envisioned a set of mechanisms to enable vehicles to join or depart from a specific cluster. Indeed, the clustering mechanisms lead to various heterogeneous clusters, i.e., multiple clusters with different sizes, independent cluster heads, and different numbers of subcluster heads.

The other contribution of the C-RACCA system lies in the fact that it enhances existing MAC protocols to ascertain relatively short latencies in disseminating warning messages after an emergency situation is detected. For each vehicle, an emergency level is defined based upon its order in the cluster with respect to the moving direction of the cluster. In the C-RACCA system, the warning message latency is calculated in such a manner that it is inversely proportional to the emergency level of the considered vehicle. This reflects the probability of the vehicle to encounter an emergency event in the cluster.

The second rational lies in the fact that the latency estimation takes into consideration the velocities and intervehicle distances of adjacent vehicles and, thereby, manages to avoid colliding with each other.

Various simulations have been conducted in two unique scenarios to verify and compare the performance of the proposed C-RACCA system with those of the naive CCA and no-CCA approaches. The simulation results clearly exhibit the applicability of the C-RACCA approach in VANET environments since it reduces both the number of collisions and the impacts of collisions when they inevitably occur.

Admittedly, our work has considered a distribution with a predetermined skew factor (i.e., ω) to estimate the emergency levels of the vehicles that are used to compute the warning message delivery latency. However, in the future, further investigation regarding any possible correlation between the skew factor and the attributes of a specific cluster (in terms of its average intervehicle distance, average velocity, size, and so forth) is required. The relationship between the transmission ranges of the vehicles in a given cluster and the size of that cluster also needs further investigation. In addition, the impact of channel conditions on the delivery of warning messages and their overall impact on the C-RACCA's performance also deserve further studies. Furthermore, the management of intercluster communications may also open up interesting research scopes.

These form some of our future research into this particular area of research.

REFERENCES

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014
Tarik Taleb (S’04–M’05) received the B.E. degree (with distinction) in information engineering and the M.Sc. and Ph.D. degrees in information sciences from Tohoku University, Sendai, Japan, in 2001, 2003, and 2005, respectively.

1015
He is currently a Senior Researcher with NEC Europe Ltd., Heidelberg, Germany. Prior to his current position and until March 2009, he was an Assistant Professor with the Graduate School of Information Sciences, Tohoku University. From October 2005 until March 2006, he was a Research Fellow with the Intelligent Cosmos Research Institute, Sendai.

1016
He is on the editorial board of a number of Wiley journals. His research interests include architectural enhancements to third-generation partnership project networks 1017
(2004), mobile multimedia streaming, wireless networking, intervehicular 1018
communications, satellite and space communications, congestion control protocols, network management, handoff and mobility management, and network 1019
security. His recent research has also focused on on-demand media transmission in multicast environments.

1020
Dr. Taleb is on the editorial board of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and the IEEE Communications Surveys and Tutorials. He also serves as Vice Chair of the Satellite and Space Communications Technical Committee of the IEEE Communications Society (ComSoc) and as Editor-in-Chief of the IEEE Communications Surveys and Tutorials. He has served on the editorial boards of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and the IEEE Communications Surveys and Tutorials. He has also served as Vice Chair of the Satellite and Space Communications Technical Committee of the IEEE Communications Society (ComSoc) and as Editor-in-Chief of the IEEE Communications Surveys and Tutorials. He has served on the editorial boards of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and the IEEE Communications Surveys and Tutorials.

1021
Dr. Taleb is on the editorial board of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and the IEEE Communications Surveys and Tutorials. He also serves as Vice Chair of the Satellite and Space Communications Technical Committee of the IEEE Communications Society (ComSoc) and as Editor-in-Chief of the IEEE Communications Surveys and Tutorials. He has served on the editorial boards of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and the IEEE Communications Surveys and Tutorials. He has also served as Vice Chair of the Satellite and Space Communications Technical Committee of the IEEE Communications Society (ComSoc) and as Editor-in-Chief of the IEEE Communications Surveys and Tutorials. He has served on the editorial boards of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and the IEEE Communications Surveys and Tutorials.

1022
The conference and has chaired some of their symposia. He received the 2009 IEEE ComSoc Asia-Pacific Young Researcher Award, the 2008 TELECOM System Technology Award from the Telecommunications Advancement Foundation, the 2007 Funai Foundation Science Promotion Award, the 2006 IEEE ComSoc Best Paper Award, and the 2004 Young Researcher's Encouragement Award from the Japan chapter of the IEEE Vehicular Technology Society.
AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Which section are you exactly referring to here?
AQ2 = What does CA stand for? Please write it out in full.
AQ3 = What does ANR stand for?

END OF ALL QUERIES